Выборочное наблюдение.

Выборочное наблюдение.

Выборочным называют не сплошное наблюдение, при котором обследованию и изучению подвергаются не все единицы исходной совокупности, а только часть единиц, при этом результат обследования части совокупности распространяется на всю исходную совокупность. Совокупность, из которой производится отбор единиц для дальнейшего обследования и изучения называется генеральной и все показатели, характеризующие эту совокупность, называются генеральными. Средняя величина признака в генеральной совокупности обозначается через , а численность единиц в генеральной совокупности обозначается через N.

Совокупность отобранных единиц называется выборочной и все показатели, характеризующие эту совокупность, называются выборочными. Средняя величина признака в выборочной совокупности обозначается через , а численность единиц выборочной совокупности обозначается через n.

Возможные пределы отклонений Выборочное наблюдение. выборочной средней величины от генеральной средней величины называют ошибкой выборки. Чем больше ошибка выборки, тем в большей степени выборочные показатели отличаются от генеральных.

Задача выборочного наблюдения состоит в том, чтобы на основе данных выборочной совокупности дать верное представление о генеральной совокупности, т. е. необходимо максимально приблизить выборочные показатели к генеральным и знать возможный предел отклонений этих величин. При прочих равных условиях чем больше численность единиц выборочной совокупности, тем меньше величина ошибки выборки. Средняя ошибка выборки обозначатся буквой и характеризует среднюю величину отклонений выборочных показателей от генеральных и при этом должно соблюдаться следующее соотношение: .

Так как средняя ошибка Выборочное наблюдение. выборки характеризует среднюю величину возможных отклонений выборочных показателей от генеральных, то всегда найдутся единицы генеральной совокупности, которые будут выходить за возможные пределы, такие, как и .

Если мы увеличим возможные пределы отклонений выборочных показателей от генеральных, то с большей вероятностью сможем утверждать, чтот показатели генеральной совокупности отличаются от выборочных показателей не более чем на какую-нибудь величину, которую называют предельной ошибкой выборки. Предельная ошибка выборки обозначается буквой и вычисляется по формуле , где - средняя ошибка выборки; t – коэффициент доверия, зависящий от вероятности, с которой можно гарантировать, что предельная ошибка выборки не превысит t-кратную среднюю ошибку, и всегда будет соблюдаться следующее неравенство: .

Таблица Выборочное наблюдение. для справки:

Процент вероятности Коэффициент доверия (t)
68,3% 1,0
95,0% 1,96
95,4% 2,0
99,0% 2,58
99,7% 3,0
99,9% 3,28

По способу отбора единиц в выборочную совокупность различают следующие виды выборочного наблюдения (выборки):

  1. собственно-случайная
  2. механическая
  3. типическая
  4. серийная

По методу отбора единиц в выборочную совокупность различают повторный и бесповторный отбор.

При повторном отборе обследованная единица после изучения вновь возвращается в генеральную совокупность и не исключена возможность дальнейшего отбора этой единицы в выборочную совокупность.



При бесповторном отборе обследованная единица не возвращается в генеральную совокупность и не участвует в дальнейшем отборе единиц в выборочную совокупность.

1) Собственно-случайная выборка заключается в том, что отбор единиц в выборочную совокупность производится без определенной системности, например, методом жеребьевки. При этом Выборочное наблюдение. каждая единица генеральной совокупности имеет одинаковую вероятность быть отобранной в выборочную совокупность. Средняя ошибка выборки рассчитывается по формулам:

Для повторного отбора: ; для бесповторного отбора: ; где - дисперсия выборочной совокупности.

2) Механическая выборка является разновидностью собственно-случайной выборки и заключается в том, что вся генеральная совокупность разбивается на определенное количество равных частей и затем из каждой части случайным образом производится отбор единиц в выборочную совокупность. Для определения средней ошибки выборки применяют те же формулы, что и при собственно-случайной выборке.

3) Типическая выборка проводится в тех случаях, когда вся генеральная совокупность разбивается на качественно-однородные группы и затем из каждой группы, случайным или механическим образом производится Выборочное наблюдение. отбор единиц в выборочную совокупность.

Формула для повторного отбора: ; для бесповторного отбора: ; где - средняя из внутригрупповых дисперсий.

4) Серийная выборка состоит в том, что обследованию подвергаются не отдельные единицы совокупности, а целые группы или серии единиц. При этом, в данной группе обследованию подвергаются все единицы. Средняя ошибка выборки определяется по формулам: Для повторного отбора: ; для бесповторного отбора: ; где - межгрупповая дисперсия; r – количество групп или серий в выборочной совокупности; R – количество групп или серий в генеральной совокупности.

Для определения необходимой численности единиц в выборочной совокупности используют формулы, применяемые для расчета средней ошибки выборки.


documentacixgfh.html
documentacixnpp.html
documentacixuzx.html
documentaciyckf.html
documentaciyjun.html
Документ Выборочное наблюдение.